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Abstract

Too often the assumption is made, when doing
software reliability modeling and prediction, that
the software involves either a single module or
node. Thereality in today'sincreasing use of multi
node client-server systems is that there are
multiple entities of software that execute on
multiple nodes that must be modeled in a system
context, if realistic reliability predictions and
assessments are to be made. For example if there
are N, clients and N, servers in a client-server
system, it is not necessarily the case that a
software failure in any of the N, clients or Nq
serverswill cause the systemto fail. Thus, if such
a systemwereto be modeled asa single entity, the
predicted reliability would be much lower than
the true reliability because the prediction would
not account for criticality and redundancy. The
first factor accounts for the possibility that the
survivability of some clients and servers will be
more critical to continued system operation than
others, while the second factor accounts for the
possibility of using redundant nodes to allow for
system recovery should a critical node fail. To
address this problem, we must identify which
nodes -- clients and servers -- are critical and
which arenot critical, as defined by whether these
nodes are used for critical or non-critical
functions, respectively.

1. Introduction

Popular softwarereliability model streat software
asasingle entity and model the failure processin
accordance with this perspective. However in a
distributed system, with multipleclientsand servers,
this approach is not applicable. We developed a
softwarereliability model that takesinto account the
fact that not all software defectsand failuresresultin
system failures in a client-server system. In this
mode therearecritica clientsand servers: clientsand
servers with critical functions (e.g., network
communication) that must bekept operationa for the
sysemto survive. Therearedso non-critical clients
and serverswith non-critical functions(e.g., email).
These clients and servers aso act as backups for
critical clientsand servers, respectively. The system
doesnot fal unlessdl non-criticad clientsfail and one
or morecritical clientsfail, or al non-critica servers
fail and one or more critical servers fail. Our
motivation was twofold: 1) Our literature search on
related research yielded few articles on software
reliability prediction that dealt with client-server
systems, so there isthe need to develop reliability
model sthat addressthis environment; 2) Our work
for the Marine Corps Tactical Systems Support
Activity (MCTSSA) required the devel opment of
such amodd because thisis the type of system that
isdeveloped by thisagency, wherevalid predictions
of softwarerdiability areimportant for evaluating the
reliability of systemsthat will be deployed inthefidd.
In addition to the devel opment of aprediction mode,
it was also important to develop an approach to
specifying softwarerdiability requirementsfor client-
server systems. These requirements must bestated in
termsthat recogni zethe difference between critical



and non-critical functionsand that a software defect
leading to a software failure does not necessarily
resultinasystemfailure. Furthermorethe prediction
methodology and the approach for specifying
softwarerdiability requirementsmust be consistent.

First we state the scope of our research. Then
we discuss the client-server reliability prediction
problem and provide definitionsthat are gpplicableto
client-server systems. Thisisfollowed by comments
on the related research we were able to find on
software and system reliability modeling of client-
server systems. Next we describe the need for
consistency between client-server system reliability
specifications and prediction models. Then we
formulate the model, which consists of two major
components: 1) probability of sysemfailure, giventhe
occurrence of node failures caused by software
defects and 2) predictions of Time to Failure for
varioustypes of nodefailures, including the type that
leads to system failure. At this point we apply the
model to the Marine Corps LOGAIS client-server
system, inwhich we compare predicted with actud
results. We close with some conclusions about the
feasibility of this model and directions for future
research.

1.1 Scope

We consider only software defects and failures
and system failures that are caused by software
failures. We exclude hardware failures. Also our
modd only includespredictionsof softwarerdiability
and predictionsof system reliability that are based on
predictions of software failures. We exclude
predictions of hardware rdiability. Interestingly, inthe
Marine Corps LOGAIS system (alogistical system
for support amphibious operations), which we used
asatest casefor our research, 4084 (88.3 percent)of
the 4584 defects were attributed to software
[HEI96].

2. Client-Server Softwar e Rdiability Prediction

Too often the assumption is made, when doing
softwarereliability modeling and prediction, that the
software involves a single node. The redlity in
today's increasing use of multi node client-server
systemsisthat there are multiple entities of software
that execute on multiple nodesthat must be modeled
inasystemcontext, if redistic reliability predictions
and assessmentsare to be made. For exampleif there
are N, clients and N, servers in a client-server
system, it isnot necessarily the case that a software
fallureinany of the N, clientsor N, servers, which
causesthe nodeto fail, will cause the systemto fail.
Thus, if such asysemwereto bemodeledasasingle
entity, the predicted reliability would bemuch lower
than thetruereliability becausethe predictionwould
not account for criticality and redundancy. Thefirst
factor accountsfor the possibility that the survivability
of some clients and serverswill be more critical to
continued system operation than others, while the
second factor accounts for the possibility of using
redundant nodesto alow for system recovery should
acritical nodefail. To addressthis problem, we must
identify which nodes -- clients and servers -- are
critical and which are not critical. We use the
following definitions:

Node: A hardware e ement on a network, generaly
a computer, that has a network interface card
installed [NOV95].

Client: A node that makes requests of serversina
network or that uses resources available through the
servers [NOV95].

Server: A nodethat provides sometype of network
service [NOV95]

Client-Server Computing: Intelligence, defined
either as processing capability or available
information, is distributed across multiple nodes.
There can be various degrees of allocation of
computing function between the client and server,
from one extreme of an application running on the



client but with requestsfor datato the server to the
other extreme of a server providing centralized
processing (e.g., mail server) and sharing information
withtheclients[NOV 95]. We usethetermsclient-
server computing and distributed system
synonymoudly.

Critical function: Angpplication function that must
operatefor the duration of themission, in accordance
with its requirement, in order for the system to
achieveitsmission god (e.g., therequirement states
that amilitary fied unit must be ableto send messages
to headquarters and receive messages from
headquarters during the entire time that a military
operation is being planned). This type of function
operates inthe network mode, which meansthat the
application requires more than a single client to
performitsfunction; thusclient to server or client to
client communication is required.

Non-critical function: Anapplication functionthat
does not have to operate for the duration of the
mission in order for the systemto achieveitsmission
goa (eg., it is not necessary to perform word
processing during the entire time that a military
operation is being planned). Often this type of
function operates in the standalone mode, which
meansthat asingle client performs the application
function; thus client to server or client to client
communication is not required, except for the
possibleinitial downloading of aprogram from afile
server or the printing of ajob at a print server.

Critical clientsand servers: Nodes with critical
functions, as defined above. These nodes must be
kept operational for the system to survive, either by
incurring nofailuresor by reconfiguring non-critical
nodes to operate as critical nodes.

Non-critical clientsand server s: Nodeswith non-
critica functions, asdefined above. These nodesdso
act as backups for the critical nodes, should the
critical nodesfail.

Softwar e Defect: Any undesirabledeviation inthe
operation of the software fromitsintended operation,
as stated in the software requirements. A software
defect may be apparent

Software Failure: A defect in the software that
causesanode (either aclient or aserver) inaclient-
server system to be unable to perform its required
functionwithin specified performancerequirements
(i.e., anode failure caused by a software defect).

Non-Persistent Failure: A softwarefailurethat
doesnot recur after canceling the offending program
and retrying it, or rebooting, or using another node.
The occurrence of such a failure is frequently
hardware dependent (e.g., occurs if memory is
insufficient) or environment dependent (e.g., occurs
only if acertain sequence of operations or functions
has occurred).

Pergstent Failure: A softwarefailurethat recurs
even after canceling the offending program and
retrying it, or rebooting, or using another node. The
occurrence of such a failure is independent of
hardware capacity and operating environment.

System Failure The state of aclient-server system,
which has experienced one or more node failures,
wherein there are insufficient numbers and types of
nodes availablefor the systlem to performitsrequired
functionswithin specified performancerequirements.

3. Related Resear ch

In our literature search we found only a few
articles that were directly related to our research;
most of the articles were only tangentially related.
We mention the more relevant ones. Hecht and
Hecht modd the availability of adigtributed sysem as
a function of capability [HEC95]. This alows
tradeoffs to be made between these two factors.
They point out that distributed systems do not just
operatein one of two states-- operational or failed --



asin conventiona reiability or availability analyss.
Instead, distributed systems can operate in partial
service or degraded states. Our approach of
distinguishing between critical and non-critical
functions, clients, and serversis consistent with this
view. Hariri and Mutlu have devel oped atwo level
approach to analyze the availability of distributed
systems[HAR95]. Attheuser level theavailability of
taskswas model ed by using agraph approach; at the
component level Markov modelswere devel oped to
analyze component availabilities. In contrast, our
primary need isto predict thetimes when software
failures will occur and the times when an
accumulation of thesefallureswill causethe systemto
fail. Lee and lyer analyzed faults in the Tandem
GUARDIAN operating system that resulted in
processor failuresandinvoked backup processesto
takeover [LEE95]. One of our objectivesissimilar
in that we anadyze the types of software defectsthat
can cause a node failure and the types of node
failures that can cause a system failure. Kumur,
Hariri, and Raghavendra developed a model for
estimating the probability of successful execution of a
distributed program and the probability that al
programs of a set run successfully [KUMS86]. In
contrast, our focusison predicting reliability at the
node and system levelsin a client-server system.

4.  Client-Server
Specification

Software  Réiability

In addition to the importance of modeling the
correct system configuration when making religbility
predictions, it isequally important to state software
reliability requirementsfor aclient-server sysem that
aremeaningful for the actua operational mode of the
system. Typicaly, reliability requirementsare stated
as .999..... What does this mean in operational
terms? Technicaly, according to the |EEE Standard
Glossary on Software Engineering Terminology
[IEE9Q], it meansthereisa.999 "probability that an
item will perform arequired function under stated
conditions for astated period of time". What isthe

"item" in the context of a client-server system? The
|IEEE definition suggests a single entity. In the
definition, "function” issingular, whereasin aclient-
server system there are multiple functions. How do
we operationalize the requirement of .999? Doesit
mean that aclient should be able to execute agiven
function 99.9 percent of the attempts? How criticd is
thisfunction relativeto other functions? How do we
allocate .999 among the various clients and servers?

What is needed is a software reliability
specification that addressesthefallowing: 1) definition
of critical and non-critical functions; 2) definition of
what condtitutes" success' and “failure" inexecuting
the functions; 3) consequences of failure to execute
these functions correctly; 4) sequence of function
execution; and 5) elapsed time in which functions
must be completed. With thistype of specificationin
hand, we can map it to a client-server architecture
with adefinition of the software and node failure
statesthat would cause a systemfailure.

5. Model Formulation

By defining System Nodes, Node Failure
Probabilities, and Failure Sates, we can formulate
the probability of system failure given that a node
failure has occurred.

5.1 System Nodes

N.. Number of Critical Client nodes.
N,o(t): Number of Non-Ciritical Client nodes.
N  Number of Critical Server nodes.
N,(t): Number of Non-Critical Server nodes.
where the total number of nodes is
N()=NeetNpe(t) +Nes+Nio(t) 1)

Aslong asthe system survives, N and N are
constants because afailure of acritical node will
result in anon-critical nodereplacing it, if thereisa



non-critical node available. Because many software
failures are non-persistent and are specific to
particular nodes, it isassumed that anon-critical node
will replaceacritica node, if oneisavailable, inan
attempt to keep the system operationa. On the other
hand, if a persistent software failure has occurred,
it could cause the replacement node to also fail. A
changein software configuration may be necessary
on the former non-critical node in order to run the
failed critical node's software. If acritical nodefalls,
the system fails, if there are no non-critical nodes
available on which to run the failed critical node's
software.

In contrast, N,(t) and N.(t) are decreasing
functions of operating time because these nodes
replace failed critical nodes, and are not themselves
replaced, where N, (0) isthe number of non-critical
clientsand N,(0) is the number of non-critical
serversat the sart of system operation, respectively.
Inaddition, if anon-critical nodefails, thefunction
that had been operational on thefailed node can be
continued on ancther node of thistype and the system
can continue to operate in a degraded state. When
either anon-critical nodereplacesacritical node or
anon-critical nodefails, N,(t) or N,(t) isdecreased
by one, as appropriate.

We assumethat when anodefails, and thefallure
doesnot result inasystem failure, the network can be
automatically or manualy reconfigured by the
network operating system or the operations
personnel, respectively.

5.2 Node Failure Probabilities

We must also account for the following node
failure probabilities:

P probability of asoftwaredefect causing acritical
client nodeto falil.

P, probability of a software defect causing anon-
critical client node to fail.

P probability of asoftware defect causing acritical
server node to fail.

p.s probability of a software defect causing anon-
critical server node to fail.

Thusgiven anodefailure, we havethefollowing
function for the probability of system failure:

PyJ/node fails=f(N., Pees Nos Prs Neo Pew N P (2)

Thefour probabilities are estimated from datain
a defect database (defect descriptions, defect
classifications, and administrative information) as
follows:

pP.=3if(1)/D, wheref(l) isthecritica client node
failure count ininterval I, (©))

P.=3if..(1)/D, wheref (1) isthe non-critical client
node failure count in interval [; 4

pP=3if<(1)/D, wheref,(l) isthecritical server node
failure count ininterval I, 5)

P.=3ifs(1)/D, wheref (1) isthe non-critical server
node failure count in interval |; (6)

and the total defect count across all intervalsis
D=3,d(l), (7

wherel istheidentification of aninterva of operating
time of the softwareand d(1) isthetota defect count
ininterval 1.

Inaspecific application, Boolean expressonsare
used to search the defect database and extract the
failure counts (e.g., f(I)) that are used to compute
eguations (3)-(6). These expressions specify the



conditionsthat qudify adefect asanodefailure (eg.,
defect that isaGeneral Protection Fault that affects

network operations on a Windows-based system).

5.3 Failure States

At agiventimet, the systlem can beinone of three
failure statesthat pertainsto the survivability of the
system, asfollows, in decreasing order of capability:

Degraded - Type 1: A software defect ina non-
critical node causesthe nodetofail. Asaresult, the
system operatesin adegraded state, with one less
non-critical node. No reconfiguration is necessary
because the failed node is not replaced.

Degraded - Type2: A softwaredefectinacritical
node causesthe nodetofall. Asaresult, the system
operates in a degraded state, but one that is more
severe than Type 1, because there would be both a
temporary loss of one critical node during
reconfiguration and a permanent loss of one non-
critical node(i.e., oneof the non-critical nodestakes
over thefunction of thefailed critical node). Under
certain conditions -- see Table 1 -- thistype of node
failure can cause a system failure.

The current version of the model assumes that
node failures are not recoverable on the node where
the failure occurred, during the mission. The next
verson of the modd will contain arepair function to
account for the case where anodefailureisrepaired
and the node is put back into operation during the
mission.

Sysem Failure The sysem fallsunder thefollowing
conditions: 1) all non-critical clientsfail and oneor
morecritical clientsfail, or 2) al non-critical servers
fall and one or morecritical serversfail. Thereason
for thisfalure event formulationisthat, inthe event of
afailed critical node, a non-critical node can be
substituted, possibly with a different software
configuration. However, if all non-critical clients

(servers) fail, and one or more critical clients
(servers) fail, therewould be no non-critical clients
(servers) left to take over for thefailed critica clients
(servers). Thefallure statesare summarizedin Table
1

5.4 System Failure Probability

The probability that oneor morecritical clients
N, fail, given that the software fails, is:

Pcc= 1- (1' Pec Nee (8)

The probability that all non-critical clients N,(t)

have failed by timet, given that the software fails, is:

Prc()=(Pre)"™" 9)

The probability that one or morecritical servers
N fail, given that the software fails, is:

P.=1-(1-p)™es (10)

The probability that all non-critical serversN,(t)

have failed by timet, given that the software fails, is:

Pos(t)=(pnd""™" (11)

Equations(8) and (9) assumethat client failures
areindependent. Thisisthe case becauseafailurein
one client's software would not cause afailurein
another client'ssoftware. However it ispossiblethat
afallurein server software could causeafailurein
client software, such asaclient accessing a server
that has corrupted data. Also, equations (10) and
(11) assumethat server failuresareindependent. This
isthe case because afalurein one server's software
would not causeafailurein another server's software.
However itispossblethat afallurein client software
could cause afailurein server software, such asa
client with corrupted data accessing a server. We
have found no case of client failuresthat were caused
by server failures nor of the conversein the datawe



have examined. Of course, thisisnot to suggest that
these events could not happen in generd. To account
for the possibility of these events, we would need to
includetheconditiona probability of aclient failure,
given aserver failure, and the converse. This model
formulation isbeyond the scope of thispaper and will
appear in afuture paper.

Combining (8), (9), (10), and (11), the probability
of asysemfalureby timet, given that anodefails, is

Pys/node fails=[ Pe] [Poe()] +{ Ped [Pas(t)]=
[1-(1-Pe) [ (P)" "1+ 1-(1-p) [ (P)"™] (1)

and the probability of anodefailure dueto software
is:

pSJV = pCC+ pnc+ pCS+ pns
(13)
5.5 Model Concepts

The model concepts areillustrated in Figures 1
and 2, wherethere arefive critical clients, five non-
criticd clients, onecritical server, and onenon-critical
server. Figure 1 shows asurviving configuration,
whereacritica client failsand acritical server fals
but there are non-critical clients and a non-critical
server to take over the functions of thefailed nodes.
The consequence of thisconfigurationisaDegraded
- Type 2 failure state. Figure 2 shows a failing
configuration where there are no non-critical clients
and server to take over for the critical failing nodes.
The consequence of this configuration is a system
failure. Inboth figures, for illustrative purposes, we
show both afailed critical client and afailed critical
server. A moretypica caseiswhen only one of the
critical nodesfails at atime.

5.6 Timeto Failure Prediction

Inorder to make Timeto Failure predictionsfor
each of the four types of node failures, we first
analyze the defect data to determine what type of
software defects could cause each of the four types

of node failures; then we partition the defect data
accordingly. More will be said about this process
when we apply the model. Next we apply equation
(14) of the Schneidewind Software Reliability
Modd [AIA93, KEL95, LYU 96, SCH92, SCH93]

to make each of the four predictions, using the
SMERFS software reliability tool [FAR93]. In
equation (14), T(t) isthe predicted time (intervals)

until the next F, failures (one or more) occur, dand &
arefalurerate parameters, sisthefirst interval where
the observed failure datais used, tisthe current
interval, and X, isthecumulative number of failures
observed in therange sit.

T " [(log[&/ (a&a(X, %

(14)
for (&/a)>(X,%F,)

Timeto Failure predictions are made for critical
clients, non-critical clients, critical servers, and non-
critical servers. Asthe predicted failure times are
recorded, we observe whether the condition for
sysemfailure, asdefined previoudy, hasbeen met. If
thisisthe case, apredicted sysem failureisrecorded.
Thus, in addition to monitoring the typesof predicted
falures(e.g., critica client), theprocessaso involves
monitoring N,(t) and N,((t) to identify the time t
when either isreduced to zero, signifying that the
supply of non-critical clientsor non-critical servers
has been exhausted. In this situation, afailure of a
critical client or critical server, respectively, will result
inasystem failure. Thuswe predict asystem failure
when the following expression is true:

((Predictcriticd clientfailure)v(N,(t)=0))w((Predict
critical server failure)v(N,(t)=0))
(15).

If our predictions produce multiple nodefaluresin
the same interval (e.g., critical client and critical

server), we record multiple failures for that interval.

6. Application of the M odel

6.1 Analysis of the Defect and Failure Data



Now we apply the software reliability modeling
approach that has been described. We apply the
model to the Marine Corps LOGAIS system -- a
client-server logigtica support system. In thissystem
it is important that the reliability specification
distinguish between failure states Degraded- Type 1,
Degraded-Type 2, and System Failure, as
previoudly defined (i.e., distinguish between node
failuresthat cause performance degradation but allow
the system to survive, and node failuresthat cause a
system failure). We make this distinction when
analyzing the system's defect data. The defect data
used in the example are from the LOGAIS defect
database management system [MHB96, MTP96].
We usethe network configurationsin Figures 1 and
2.

InthisWindows-based client-server system, we
use the types of clients and servers previously
defined, with corresponding types of defects and
failures, asidentified in the defect database [MHB96,
MTP96], and thefollowing short-hand notation for
identifying the attributes of the defect database:

0 S: Software Defect

0 G: General Protection Fault (GPF)
o N: Network Mode Failure

0 C: System Crash

The LOGAIS defect database was queried in
order to identify the software defects that qualify as
node failures. The following Boolean expressions,
corresponding to the four typesof nodefailures, were
used:

1. Critical Client Failure: COUNT as failures
WHERE (SvGvNvnotC). A GPF causes a node
falure (Degraded-Type 2) on acritica client, aclient
whichmust maintain communication with other nodes
on the network (Network Mode), and the failure
does not cause a System Crash (loss of server).

2. Non-Critical Client Failure: COUNT asfailures
WHERE (SvGvnotNvnotC). A GPF causes a
node failure (Degraded-Type 1)on a non-critical

client, a client which does not have to maintain
communication with other nodes on the network
(Standalone Mode), and the failure does not cause
a System Crash (loss of server).

3. Critical Server Faillure: COUNT as failures
WHERE (SvnotGvNvC). A System Crash causes
a node failure (Degraded-Type 2)on a critical
server, aserver which must maintain communication
with other nodes on the network (Network Mode),
and the failure is not a GPF; it is more serious,
resulting in the loss of a server.

4. Non-Ciritical Server Failure: COUNT asfailures
WHERE (SvnotGvnotNvC). A System Crash
causes anode failure (Degraded-Type 1)on a non-
critical server, a server which does not have to
maintain communication with other nodes on the
network, and the failure is not a GPF; it is more
serious, resulting in the loss of a server.

The above classification associates GPF with
clients and System Crash with servers; it also
associates Network Mode Failures with critical
nodefailures. Notethat thisisonly anexample. For
other systems, different defect and failure
classifications may be appropriate.

Taking the union of 1-4 we form thetotal failure
count:

5. Tota Failure Count: COUNT asfailuresWHERE
(Sv((GvnotC)w(notGvC))). Thisexpressionisused
to verify thecorrectnessof expressions 1-4 because
it should equal their sum.

Upon querying the defect database, using the
above expressions, we arrived at the failure counts
lisedin Table2intherange51,61. Thisisasample
of the nodefailure database, selected becauseit isthe
prediction rangefor some of the comparisonsthat will
be made later between predicted and actua Timeto
Failure. Thefailure counts corresponding to types
1-5, aboveare summarized in Table 3, which shows



theempirical probabilitiesof nodefailure, wherewe

used equations (3)--(7) and (13) to compute them.

6.2 Application Predictions
6.2.1 Timeto Failure

Using equation (14 ) and failure data in the
observed range 1-50 (not shown) , we made
predictions for Timeto Failure, for t>50 days, for
critical clients, non-critical clients, and non-critical
servers, in Tables 4, 5 and 6, respectively. The
predictionsare madefor agiven numbersof failures
( time to one failure for t>50 days, time to two
failures for t>50 days, etc.). The predictions are
compared with the actual failure data, with the
relative error and average relative error for
cumulative values shown. In the case of critical
servers, there are only two actual failures, both of
which occur in the observed range. Only one
prediction of Timeto Failurefor onemorefailure
could be made at t=50 for critica servers becausethe
predicted remaining failures at t=50 is 1.40 ;
therefore, critical server failluresare not tabulated. In
the case of non-critical nodes, the failure datais
sufficiently denseto dlow afailure count interval of
oneday. Inthe case of critical clients, the failure data
was sparse; thus a five day interval was used for
prediction, with these predictions converted to the
one day intervals shown in Table 4. We note that
predictionsaredifficult to makewith thistype of data
becausethe defectsand failures are not recorded in
CPU execution time. Rather they are recorded in
calendar time in batches, as shown in the Table 2,
based on admini strative convenience. Many of these
batches are submitted at the end of aworkday. This
time becomesthe "submit date".

Using the data in Tables 4-6, we merge and
sequencethe varioustypes of failure predictionsin
Table 7. The purpose of thistableisto construct the
scenario of failluresand surviving non-critical nodes
so that the time of System Failure can be predicted.
The table shows that seven node failures (i.e., the
sequence NS, NC, NC, CC, NC, NC, CC) are

predicted to occur beforethe systemis predicted to
fail. Thisoccursat t=61.07 days when there are no
non-critica clientsavallableand acritica client fails.
No critical server failures are shown in thistable
because the prediction of Timeto Failure of 99.35
days cumulative is beyond the prediction range of
interest in this example.

Using the data in Table 7, we plot predicted
cumulative failures and number of available non-
critical clients versus cumulativetimeto failurein
Figure 3. Thisgraph showsthe accumulation of node
failures, with the corresponding reduction in the
available non-critical clients, until the maximum
allowable failures occurs, and the system fails.

Using the data in Tables 4-6, we merge and
sequencethevarioustypesof actua falures in Table
8. Smilar to Table 7, the purpose of thistableisto
congtruct the scenario of actua failuresand surviving
non-critical nodes so that the actual time of System
Failure can be determined and compared with the
predicted values. Asin the case of the predictions,
this table shows that seven node failures (i.e., the
sequence NC, NS, NC, NC, NC, NC, CC) occur
beforethesystemfails. Thisoccursat t=61dayswhen
thereareno non-critical clientsavailableand acritica
client fails. No critic server faluresare shownin this
table because they occurred prior to therange of this
example.

Using the data in Table 8, we plot actual
cumulative failures and number of available non-
critica clients versus cumulative time to failurein
Figure4. The shape of Figure4 iscaused by multiple
failures occurring on the same day in somecases. In
comparing Figures 3 and 4, we seethat in each case
seven node failures are required to cause a system
falure and that the system fails on Day 61; however,
thesupply of non-critical clientsbecomesexhausted
earlier in the actual case.

6.2.2 Probability of System Failure



Lastly, using equation (12), we predict the
probability of systemfailure, given anodefailure, in
column 5 of Table 9, as the system progresses
through the predicted failure scenario that was shown
in Table 7 and Figure 3. Except for row 2in Table 9,
the actual probability is the same as the predicted
probability because the actual failure scenario that
was shown in Table 8 and Figure 4 produces the
samenumbersof non-critical clientsand serversthat
areshown in columns 6 and 7, repectively. Because
the predicted and actua failure scenarios are
identical, except for row 2, the predicted time to
failure and type of node failure, columns 1 and 2,
respectively, can be compared in with the
corresponding actud valuesin columns3and 4, for
given probabilities of system failure. These values
were reproduced from Tables 7 and 8, respectively.
Becausefor agiven Pg/nodefails, the cumulative
timetofallure occurslater for the predicted values,
themodel isabit optimistic with respect to redlity for
thisexample. Notethat thein thelast row of Table9
the system has not yet failed. This occurs when a
critical client fallsat Day 61.07 predicted (see Table
7 and Figure 3) and at Day 61 actual (see Table 8
and Figure4). At thistimethere are no non-critica
clients left to replace the failed critical client.

The significant results that emerge from this
analysis are that: 1) The Py/node fails is only
significant (.029790) when the supply of both non-
critical clients and non-critical servers has been
exhausted and 2) P /nodefailsis significantly lower
than the probability of any type of node failure
caused by asoftware defect: p,,=.065705, obtained
from equation (13) and computed in Table 3. Thus
evauationsof systemreliability should recognizethat
softwar e failures are not necessarily equivalent to
system failures and that assessments of software
reliability that treat every failure as equivalent to a
system failure will grossy understate system
reliability.

7. Conclusions and Future Research

Based on the above approach, it appearsfeasible
to develop a system software reliability model for a
client-server system. In order to implement the
approach, it is necessary to partition the defects and
failuresinto classes that are then associated with
critical and non-critical clientsand servers. Oncethis
isdone, predictions are made of Timeto Failurefor
each type; the predictionsare classified according to
those that would result in anodefailure caused by a
software defect and those that would result in a
system failure caused by aseries of software defects.
Then the probability of system failureiscomputed. A
significant result of the research is that software
failures should not be treated as the equivalent of
system failures because to do so would grossly
understate system reliability.

Infutureresearchwewill deal with the problem of
how to apply the model to asystem that hasalarge
number of nodes. The technique that we described
for monitoring the times when predicted node and
system failures occur would be cumbersome for a
large system. It appears that a program must be
written to automate this process. Other possible
future research activitiesinc ude thefollowing: extend
the model to include hardware failures, develop
measures of performance degradation, asnodesfall;
include anoderepair rateto reflect the possibility of
recovering failed nodes during the operation of the
system; apply smoothing techniques, such as the
moving average, to mitigate anomaliesin calendar
time defect data.
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Tablel

Failure States

Degraded - Type 1 Degraded - Type 2 System Failure
Non-Critical Client Node Failure Does Not Apply Does Not Apply
Critical Client Does Not Apply Node Failure(s) and Node Failure(s) and
Nie(£)>0 Nie(t)=0
Non-Critical Server Node Failure Does Not Apply Does Not Apply
Critical Server Does Not Apply Node Failure(s) and Node Failure(s) and
Nis(t)>0 Nis(t)=0
Table?2

Chronological Node Failure Count Database (Sample)
CC: Critical Client Node Failure
NC: Non-Critical Client Node Failure
CS: Critical Server Node Failure
NS: Non-Critical Server Node Failure

Interval Defect 1D Number | Submit | CC | NC [ CS | NS
Date

51 2633,2634 2 1/24/95 X

51 2635,2636,2637,2638 4 1/24/95 X

52

53 2661,2662,2663,2664 4 1/26/95

54 2641,2644,2645,2669, 8 1/27/95
2671,2672,2673,3003

54 2640,2643,2670,2674, 7 1/27/95 X
2675,2676,2783

95 2450 1 1/30/95 X

56

57

58 2487 1 2/2/95 X

59 2511,2512,2513 3 2/3/95 X




60

61 3025,3026,3027,3029 4 2/7/95 X
Table3
Summary of Node Failures (4048 Softwar e Defects)

Number of Failures Probabilitx

1. Critical Client 24 P=-005929

2.Non-Critical Client 83 p.=.020250

3.Critical Server 2 Pe=-000494

4. Non-Critical Server 158 P.=-039032

5. Tota 267 Psw=-065705
Table4

Critical Client Predictions Made at Time=50 Days
Observed Range=1,50 Days; Failure Count=11; Prediction Range>50 Days

Predicted

Given Timeto Cumulative Time Timeto Cumulative Time Relative
Number of Failure to Failure (Days) Failure to Failure (Days)
Failures

Average=9.12%

Table5
Non-Critical Client Predictions Made at Time=50 Days
Observed Range=1,50 Days; Failure Count=36; Prediction Range>50 Days

| Predicted I Actual I |




Given Timeto Cumulative Time Timeto Cumulative Timell Relative

Number of Failure to Failure (Days) Failure to Failure (Days) Error
Failures Days Days Percent

1 241 52.41 1 51 +2.76

2 4.87 54.87 1 51 +7.59

3 7.37 57.37 3 53 +8.25

4 9.92 59.92 3 53 +13.06

5 12.52 62.52 3 53 +17.96
Average=9.92%

Table 6
Non-Critical Server Predictions Made at Time=50 Days
Observed Range=1,50 Days; Failure Count=108; Prediction Range>50 Days

Timeto Cumulative Time Timeto Cumulative Time Relative
to Failure (Days) to Failure (Days)

Average=8.30%



Table7

Days, Prediction Range=51,61 Days

CC: Critical Client NC: Non-Critica Client

NS: Non-Critical Server

Predicted Timeto Failure When Failuresare Merged and Sequenced. Observed Range=1,50

Cumulative Time Timeto Typeof | Number of Non- | Number of Non-
to Failure (Days) Failure Failure Critical Clients | Critical Servers
Days Available Available
50 1.96 5 1
51.96 45 NS 5 0
52.41 2.46 NC 4 0
54.87 32 NC 3 0
55.19 2.18 cC 2 0
57.37 255 NC 1 0
59.92 115 NC 0 0
61.07 CcC System Failure
Table8

NS: Non-Critical Server

Actual Timeto FailureWhen Failuresare Merged and Sequenced. Range=51,61 Days
CC.: Critical Client NC: Non-Ciritical Client

Cumulative Time Timeto Typeof | Number of Non- | Number of Non-
to Failure (Days) Failure Failure Critical Clients | Critical Servers
Days Available Available

50 1 5 1

51 0 NC,NS 4 0

51 2 NC 3 0

53 0 NC 2 0

53 0 NC 1 0

53 8 NC 0 0

61 CcC System Failure

Table9




Probability of System Failure

Predicted Predicte Actud Actual | Probability of | Number of | Number of
Cumulative d Cumulative Type of System Non-Critical | Non-Ciritical
Time Typeof | Timeto Failure | Node | Failure Given Clients Servers
to Failure Node (Days) Failure aNode Available Available
Days Falure Falure
50 50 0.000019 5 1
51.96 NS 0.000494" 5 0
52.41 NC 51 NC,NS 0.000494 4 0
54.87 NC 51 NC 0.000494 3 0
55.19 CC 53 NC 0.000506 2 0
57.37 NC 53 NC 0.001087 1 0
59.92 NC 53 NC 0.029790 0 0

* Appliesonly to predicted values.
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Figure 1. Surviving Configuration

Predicted Cumulative Failures and
Available Non-Critical Clients

of - 1s 8
\ c
2
14 0O
o i
8 9
z I
g 4 c
5 122
5 .
o 0
2 -
11 0
o]
\\\\Sys Fails g
07\ Il Il Il Il ‘\___ \7 z
50 52 54 56 58 60 62
Cumulative Time to Next Failure (Days)
Figure 3. Predicted Node and System Failures

Figure 2. Failing Configuration
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Figure4. Actual Node and System Failures




